Mailing Standards of the United States Postal Service, Domestic Mail Manual, which replaces the current DMM 58.

The redesigned DMM contains all USPS domestic mailing standards, reorganized in a way that is more intuitive to the user. Essentially, the new organization will (1) increase user’s ability to find information, (2) increase confidence that users have found all the information they need, and (3) reduce the need to consult multiple chapters of the Manual to locate necessary information.

It is important to note that the redesign of the DMM does not alter and should not be construed as altering existing mailing standards in DMM 58. The Postal Service has not revised any standards based on the DMM redesign. Changes to mailing standards will continue to be published through Federal Register notices and the Postal Bulletin, and will appear in the next printed version of Mailing Standards of the United States Postal Service, Domestic Mail Manual, and in the online version available via Postal Explorer (http://pe.usps.gov).

List of Subjects in 39 CFR Part 111

Administrative practice and procedure, Incorporation by reference.

In view of the considerations discussed above, the Postal Service hereby amends 39 CFR Part 111 as follows:

PART 111—GENERAL INFORMATION ON POSTAL SERVICE

1. The authority citation for part 111 continues to read as follows:

greenhouse, nursery, and floriculture workers; residential users.

This listing is not intended to be exhaustive, but rather provides a guide for readers regarding entities likely to be affected by this action. Other types of entities not listed in this unit could also be affected. The North American Industrial Classification System (NAICS) codes have been provided to assist you and others in determining whether this action might apply to certain entities. If you have any questions regarding the applicability of this action to a particular entity, consult the person listed under FOR FURTHER INFORMATION CONTACT.

B. How Can I Access Electronic Copies of this Document and Other Related Information?

In addition to using EDOCKET (http://www.epa.gov/edocket/), you may access this Federal Register document electronically through the EPA Internet under the “Federal Register” listings at http://www.epa.gov/fedrgstr/. A frequently updated electronic version of 40 CFR part 180 is available at E-CFR Beta Site Two at http://www.gpoaccess.gov/ecfr/. To access the OPPTS Harmonized Guidelines referenced in this document, go directly to the guidelines at http://www.epa.gov/opptsfrs/home/guidelin.htm/.

II. Background and Statutory Findings

In the Federal Register of July 2, 2003 FR 39547–39554 (FRL–7312–8), EPA issued a notice pursuant to section 408(d)(3) of FFDCA, 21 U.S.C. 346a(d)(3), announcing the filing of two pesticide petitions (PP 2F6427 and 3F6566) by Mitsui Chemicals, Inc., Chiyoda-ku, Tokyo, Japan. The petitions requested that 40 CFR 180.603 be amended by establishing tolerances for residues of dinotefuran, [N-methyl-N′-nitro-N″-(tetrahydro-3-furylmethyl)guanidine] and its metabolites DN [1-methyl-3-(tetrahydro-3-furylmethyl)guanidine] and UF [1-methyl-3-(tetrahydro-3-furylmethyl)urea], expressed as dinotefuran on fruiting vegetables, group 8 at 0.7 ppm; tomato paste at 1.0 ppm; cucurbit at 0.5 ppm; head and stem brassica vegetables at 1.4 ppm; grape at 0.8 ppm; raisin at 2.5 ppm; potato at 0.05 ppm; potato, chips at 0.10 ppm; granules at 0.15 ppm; cattle, goat, hog, horse and sheep fat, meat, and byproducts, and milk at 0.05 ppm; and (PP 2F6427) in or on cotton seed undelinted at 0.2 ppm; and cotton gin byproducts at 7.0 ppm. That notice included a summary of the petition prepared by Mitsui Chemicals Inc., the registrant. One comment was received from a private citizen, in support of this notice.

Section 408(b)(2)(A)(i) of FFDCA allows EPA to establish a tolerance (the legal limit for a pesticide chemical residue in or on a food) only if EPA determines that the tolerance is “safe.” Section 408(b)(2)(A)(ii) of FFDCA defines “safe” to mean that “there is a reasonable certainty that no harm will result from aggregate exposure to the pesticide chemical residue, including all anticipated dietary exposures and all other exposures for which there is reliable information.” This includes exposure through drinking water and in residential settings, but does not include occupational exposure. Section 408(b)(2)(C) of FFDCA requires EPA to give special consideration to exposure of infants and children to the pesticide chemical residue in establishing a tolerance and to “ensure that there is a reasonable certainty that no harm will result to infants and children from aggregate exposure to the pesticide chemical residue* * *.”

EPA performs a number of analyses to determine the risks from aggregate exposure to pesticide residues. For further discussion of the regulatory requirements of section 408 of FFDCA and a complete description of the risk assessment process, see the final rule on Bifenthrin Pesticide Tolerances in the Federal Register of November 26, 1997 (62 FR 62961) (FRL–5754–7).

III. Aggregate Risk Assessment and Determination of Safety

Consistent with section 408(b)(2)(D) of FFDCA, EPA has reviewed the available scientific data and other relevant information in support of this action. EPA has sufficient data to assess the hazards of and to make a determination on aggregate exposure, consistent with section 408(b)(2) of FFDCA, for tolerances for combined residues of dinotefuran, [N-methyl-N′-nitro-N″-(tetrahydro-3-furylmethyl)guanidine] and its metabolites DN [1-methyl-3-(tetrahydro-3-furylmethyl)guanidine] and UF [1-methyl-3-(tetrahydro-3-furylmethyl)urea], expressed as dinotefuran on fruiting vegetables, group 8 at 0.7 ppm; tomato paste at 1.0 ppm; cucurbit at 0.5 ppm; head and stem brassica vegetables at 1.4 ppm; grape at 0.8 ppm; raisin at 2.5 ppm; potato at 0.05 ppm; potato, chips at 0.10 ppm; potato, granules/flakes at 0.15 ppm; cotton seed undelinted at 0.4 ppm; cotton gin byproducts at 7.0 ppm; and for residues of dinotefuran, [N-methyl-N′-nitro-N″-(tetrahydro-3-furylmethyl)guanidine] alone in or on cattle meat, fat, and meat byproducts (mbyp) at 0.05 ppm; goat meat, fat, and mbyp at 0.05 ppm; hog meat, fat, and mbyp at 0.05 ppm; horse meat, fat, and mbyp at 0.05 ppm; sheep meat, fat, and mbyp at 0.05 ppm; and milk at 0.05 ppm. EPA’s assessment of exposures and risks associated with establishing the tolerance follows.

A. Toxicological Profile

EPA has evaluated the available toxicity data and considered its validity, completeness, and reliability as well as the relationship of the results of the studies to human risk. EPA has also considered available information concerning the variability of the sensitivities of major identifiable subgroups of consumers, including infants and children. The nature of the toxic effects caused by dinotefuran are discussed in Table 1 of this unit as well as the no observed adverse effect level (NOAEL) and the lowest observed adverse effect level (LOAEL) from the toxicity studies reviewed.

<table>
<thead>
<tr>
<th>Guideline No.</th>
<th>Study Type</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>870.3100</td>
<td>90-Day oral toxicity in rats</td>
<td>NOAEL: 38/384 (M/F) mg/kg/day; LOAEL: 384 (M) mg/kg/day based on adrenal histopathology; 1,871 (F) mg/kg/day based on decreased body weight/body weight gain, changes in hematologic/clinical chemistry, changes in organ weights, and adrenal histopathology</td>
</tr>
<tr>
<td>Guideline No.</td>
<td>Study Type</td>
<td>Results</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 870.3100 | 90-Day oral toxicity in mice | NOAEL: 4,442/5,414 (M/F) mg/kg/day
LOAEL: 10,635/11,560 (M/F) mg/kg/day, based on decreased body weight, body weight gain |
| 870.3150 | 90-Day oral toxicity in dogs | NOAEL: 307/not determined (M/F) mg/kg/day
LOAEL: 862 (M) mg/kg/day, based on body weight gain, hemorrhagic lymph nodes; <59 (F), based on decreased body weight, body weight gain |
| 870.3200 | 28-Day dermal toxicity (rats) | Systemic
NOAEL: 1,000 mg/kg/day
LOAEL: not determined (no effects seen)
Dermal
NOAEL: 1,000 (M), ≤200 (F) mg/kg/day
LOAEL: not determined/≤1,000 (M/F) mg/kg/day based on lack of effects in males, increase in acanthosis/hyperkeratosis in high dose females (lower doses not evaluated histopathologically) |
| 870.3465 | 28-Day inhalation toxicity (rat) | NOAEL: <0.22 (M) mg/L, 0.22 (F) mg/L
LOAEL: decreased body weight gain, food consumption (M); increased clinical signs (protruding eyes) (F) |
| 870.3700 | Prenatal developmental toxicity study (rats) | Maternal
NOAEL: 300 mg/kg/day
LOAEL: 1,000 mg/kg/day based on decreased body weight gain and food consumption
Developmental
NOAEL: 1,000 mg/kg/day
LOAEL: not determined (no effects seen) |
| 870.3700 | Prenatal developmental toxicity study (rabbits) | Maternal
NOAEL: 52 mg/kg/day
LOAEL: 125 mg/kg/day based on decreased body weight gains, food consumption, and necropsy findings
Developmental
NOAEL: 300 mg/kg/day
LOAEL: >300 mg/kg/day (no effects seen) |
| 870.3800 | Reproduction and fertility effects (rats) | Parental/systemic
NOAEL: 241/268 (M/F) mg/kg/day
LOAEL: 822/907 (M/F) mg/kg/day, based on decreased food consumption, weight gain in males, soft feces in females, and decreased spleen weights in both sexes
Reproductive (tentative)
NOAEL: 241/268 (M/F) mg/kg/day
LOAEL: 822/907 (M/F) mg/kg/day, based on decreased uterine weights and microscopic alterations in the uterus and vagina of F0 females, decreased numbers of primordial follicles in F1 females, altered estrous cyclicity in F0 and F1 females, increase in abnormal sperm morphology in F0 and F1 males, decreased testicular sperm count in F0 males, and decreased sperm motility in F1 males
Developmental
NOAEL: 241/268 (M/F) mg/kg/day
LOAEL: 822–935/907–1005 (M/F) mg/kg/day based on decreased body weights, body weight gains, and spleen weights in F1 and F2 males and females, decreased thymus weights in F2 males and females, and decreased forelimb grip strength (F1 males) or hindlimb grip strength (F1 females) |
| 870.4100 | Chronic toxicity (rats) | See 870.4300 combined chronic toxicity/carcinogenicity (rats) |
| 870.4100 | Chronic toxicity (dogs) | NOAEL: >20/22 (M/F) mg/kg/day
LOAEL: 20/108 (M/F) mg/kg/day based on decreased thymus weight, decreased food efficiency, body weight, and body weight gain in females, decreased thymus weight in males |
| 870.4200 | Carcinogenicity (rats) | See 870.4300 combined chronic toxicity/carcinogenicity (rats) |
| 870.4200 | Carcinogenicity (mice) | NOAEL: <3 (M), <4 (F) mg/kg/day
LOAEL: 3/4 (M/F) mg/kg/day based on decreased spleen weights at week 79 terminal sacrifice in males and increased ovarian weights at week 53 in females |
TABLE 1.—SUBCHRONIC, CHRONIC, AND OTHER TOXICITY—Continued

<table>
<thead>
<tr>
<th>Guideline No.</th>
<th>Study Type</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>870.4300</td>
<td>Combined chronic toxicity/carcinogenicity (rats)</td>
<td>NOAEL: 99.7/127.3 (M/F) mg/kg/day LOAEL: 991/1,332 (M/F) mg/kg/day based on decreased body weight gain, food efficiency in females, increased incidences of kidney pelvic mineralization and ulceration in males</td>
</tr>
<tr>
<td>870.5100</td>
<td>Bacterial reverse mutation test</td>
<td>Negative. ± S9 up to 16,000 µg/plate</td>
</tr>
<tr>
<td>870.5100</td>
<td>Bacterial reverse mutation test</td>
<td>Negative. ± S9 up to limit dose of 5,000 µg/plate</td>
</tr>
<tr>
<td>870.5300</td>
<td>In vitro mammalian cell gene mutation test</td>
<td>Negative. ± S9 up to 2002 µg/mL (mouse lymphoma L5178Y cells)</td>
</tr>
<tr>
<td>870.5375</td>
<td>In vitro mammalian clastogenicity test</td>
<td>Negative for clastogenic/aneugenic activity up to 2000 µg/mL (CHL/IU cells)</td>
</tr>
<tr>
<td>870.5395</td>
<td>In vivo mammalian cytogenetics -micronucleus assay</td>
<td>Negative at oral doses up to 1,080 mg/kg/day for 2 days</td>
</tr>
<tr>
<td>870.6200</td>
<td>Acute neurotoxicity screening battery</td>
<td>NOAEL: 750 (M), 325 (F) mg/kg/day LOAEL: 1,500 (M), 750 (F) mg/kg/day based on decreased motor activity on day 1</td>
</tr>
<tr>
<td>870.6200</td>
<td>Subchronic neurotoxicity screening battery</td>
<td>NOAEL: 33/40 (M/F) mg/kg/day LOAEL: 327/400 (M/F) mg/kg/day based on increased motor activity during week 2</td>
</tr>
<tr>
<td>870.7485</td>
<td>Metabolism and pharmacokinetics (rats)</td>
<td>Absorption was >90% regardless of dose. The radiolabel was widely distributed through the body and was completely excreted within 168 hours of treatment. Urine was the primary elimination route, accounting for 88–99.8%. Excretion into the urine was rapid, being 84–99% complete within 24 hours of treatment. Absorption of the radioactivity was linear within the dose range of 50 and 1,000 mg/kg. Elimination of radioactivity was fast for all groups with a T1/2 ranging from 3.64 to 15.2 hours for the low and high doses, respectively. Radioactivity was rapidly transferred from maternal blood to milk and widely distributed in the fetal tissues. The Cmax for milk and fetal tissues was detected 0.5 hours after maternal treatment. The concentrations of radioactivity in fetal tissue and maternal milk declined quickly and were below detection limits 24 hours post-treatment. After IV or oral treatment, 75–93% of the administered radiolabeled test material, or nearly 93–97% of total urinary radiolabel, was excreted unchanged in the urine. The parent compound was also the primary component in the plasma, milk, bile, feces, and most tissues collected 4–8 hours after treatment and at both dose levels. Less than 10% of the parent compound was metabolized into numerous minor metabolites that were not well resolved by High Performance Liquid Chromatography (HPLC) or 2D-TLC. For all parameters measured in this study, no sex - or dose-related differences or label position effects were found.</td>
</tr>
</tbody>
</table>

Special study | Neonatal rat metabolism study (12-day old rat pups) | After a single oral 50 mg/kg dose of (G-14C) MTI-446 to 12-day old rats, absorption was high (absorption could not be adequately determined but may have approached 80%) and the radiolabel was widely distributed within the body. Approximately 32–36% of the administered dose was excreted within 4 hours of treatment. Urine was the primary elimination route as indirectly evidenced by finding high radioactive areas in the kidneys and bladder by whole body autoradiography. No areas of tissue sequestration were found and no gender-related differences were identified. The test material was essentially not metabolized, the parent compound accounting for >97% of the radiolabel in the excreta, plasma, kidneys, and stomach, and nearly 61–83% in intestines (and contents), and liver. |

B. Toxicological Endpoints

The dose at which no adverse effects are observed (the NOAEL) from the toxicology study identified as appropriate for use in risk assessment is used to estimate the toxicological level of concern (LOC). However, the lowest dose at which adverse effects of concern are identified (the LOAEL) is sometimes used for risk assessment if no NOAEL was achieved in the toxicology study selected. An uncertainty factor (UF) is applied to reflect uncertainties inherent in the extrapolation from laboratory animal data to humans and in the variations in sensitivity among members of the human population as well as other unknowns. An UF of 100 is routinely used, 10X to account for interspecies differences and 10X for intraspecies differences. Three other types of safety or uncertainty factors may be used: “Traditional uncertainty factors;” the “special FQPA safety factor;” and the “default FQPA safety factor.” By the term “traditional uncertainty factor,” EPA is referring to those additional uncertainty factors used prior to FQPA passage to account for database deficiencies. These traditional uncertainty factors have been
incorporated by the FQPA into the additional safety factor for the protection of infants and children. The term “special FQPA safety factor” refers to those safety factors that are deemed necessary for the protection of infants and children primarily as a result of the FQPA. The “default FQPA safety factor” is the additional 10X safety factor that is mandated by the statute unless it is decided that there are reliable data to choose a different additional factor (potentially a traditional uncertainty factor (UF) or a special FQPA safety factor).

For dietary risk assessment (other than cancer) the Agency uses the UF to calculate an acute or chronic reference dose (aRd or cRd) where the Rd is equal to the NOAEL divided by an UF of 100 to account for interspecies and intraspecies differences and any additional factor (potentially a special FQPA safety factor).

A Q* is calculated and used to estimate cancer risk. The Q* approach will lead to some degree of cancer risk. The Q* approach assumes that any amount of exposure will lead to some degree of cancer risk. A Q* is calculated and used to estimate risk which represents a probability of occurrence of additional cancer cases (e.g., risk). An example of how such a probability risk is expressed would be to describe the risk as one in one hundred thousand (1 x 10^-5), one in a million (1 x 10^-6), or one in ten million (1 x 10^-7).

Under certain specific circumstances, margin of exposure (MOE) calculations will be used for the carcinogenic risk assessment. In this non-linear approach, a “point of departure” is identified below which carcinogenic effects are not expected. The point of departure is typically a NOAEL based on an endpoint related to cancer effects though it may be a different value derived from the dose response curve. To estimate risk, a ratio of the point of departure to exposure (MOE_cancer = point of departure/exposures) is calculated.

A summary of the toxicological endpoints for dinotefuran used for human risk assessment is shown in the following Table 2.

Table 2. Summary of Toxicological Dose and Endpoints for Dinotefuran for Use in Human Risk Assessment

<table>
<thead>
<tr>
<th>Exposure/Scenario</th>
<th>Dose Used in Risk Assessment, UF</th>
<th>Special FQPA SF and Level of Concern for Risk Assessment</th>
<th>Study and Toxicological Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute dietary (General population including infants and children)</td>
<td>NOAEL = 125 mg/kg/day UF = 100 Acute RfD = 1.25 mg/kg/day</td>
<td>FQPA SF = 1 aPAD = acute RfD ÷ FQPA SF = 1.25 mg/kg/day</td>
<td>Developmental toxicity study in rabbits LOAEL = 300 mg/kg/day based on clinical signs in does (prone position, panting, tremor, erythema) seen following a single dose.</td>
</tr>
<tr>
<td>Chronic dietary (All populations)</td>
<td>LOAEL = 20 mg/kg/day UF = 1,000 Chronic RfD = 0.02 mg/kg/day</td>
<td>FQPA SF = 1 cPAD = chronic RfD ÷ FQPA SF = 0.02 mg/kg/day</td>
<td>Chronic toxicity study in dogs LOAEL = 20 mg/kg/day based on decreased thymus weight in males</td>
</tr>
<tr>
<td>Short-term incidental oral (1 to 30 days)</td>
<td>NOAEL = 33 mg/kg/day</td>
<td>Residential LOC for MOE = 100 Occupational = NA</td>
<td>Subchronic neurotoxicity study in rats LOAEL = 327 mg/kg/day based on increased motor activity during week 2</td>
</tr>
<tr>
<td>Intermediate-term incidental oral (1 to 6 months)</td>
<td>NOAEL = 22 mg/kg/day</td>
<td>Residential LOC for MOE = 100 Occupational = NA</td>
<td>Chronic toxicity study in dogs LOAEL = 108 mg/kg/day based on decreased body weight and body weight gain in females</td>
</tr>
<tr>
<td>Short-term dermal (1 to 30 days)</td>
<td>No quantitation required.</td>
<td>Residential LOC for MOE = NA Occupational LOC for MOE = NA</td>
<td>No quantitation required. No systemic toxicity was seen at the limit dose in a 28-day dermal toxicity study in which neurotoxicity was evaluated. No developmental toxicity concerns.</td>
</tr>
<tr>
<td>Intermediate-term dermal (1 to 6 months)</td>
<td>Oral study NOAEL = 22 mg/kg/day (dermal absorption rate = 30%)</td>
<td>Residential LOC for MOE = 100 Occupational LOC for MOE = 100</td>
<td>Chronic toxicity study in dogs LOAEL = 108 mg/kg/day based on decreased body weight and body weight gain in females</td>
</tr>
<tr>
<td>Long-term dermal (>6 months)</td>
<td>Oral study LOAEL = 20 mg/kg/day (dermal absorption rate = 30%)</td>
<td>Residential LOC for MOE = 1,000 Occupational LOC for MOE = 1,000</td>
<td>Chronic toxicity study in dogs LOAEL = 20 mg/kg/day based on decreased thymus weight in males</td>
</tr>
<tr>
<td>Short-term inhalation (1 to 30 days)</td>
<td>Inhalation study LOAEL = 60 mg/kg/day</td>
<td>Residential LOC for MOE = 1,000 Occupational LOC for MOE = 1,000</td>
<td>28-day Inhalation toxicity study in rats LOAEL = 60 mg/kg/day based on decreased body weight gain in males</td>
</tr>
</tbody>
</table>
Table 2.—Summary of Toxicological Dose and Endpoints for Dinotefuran for Use in Human Risk Assessment—Continued

<table>
<thead>
<tr>
<th>Exposure/Scenario</th>
<th>Dose Used in Risk Assessment, UF</th>
<th>Special FQPA SF and Level of Concern for Risk Assessment</th>
<th>Study and Toxicological Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate-term inhalation (1 to 6 months)</td>
<td>Inhalation study LOAEL = 60 mg/kg/day</td>
<td>Residential LOC for MOE = 1,000 Occupational LOC for MOE = 1,000</td>
<td>28-day Inhalation toxicity study in rats LOAEL = 60 mg/kg/day based on decreased body weight gain in males</td>
</tr>
<tr>
<td>Long-term inhalation (>6 months)</td>
<td>Oral study LOAEL = 20 mg/kg/day (inhalation absorption rate = 100%)</td>
<td>Residential LOC for MOE = 1,000 Occupational LOC for MOE = 1,000</td>
<td>Chronic toxicity study in dogs LOAEL = 20 mg/kg/day based on decreased thymus weight in males</td>
</tr>
<tr>
<td>Cancer (oral, dermal, inhalation)</td>
<td>NA</td>
<td>NA</td>
<td>Not required; no evidence of carcinogenicity.</td>
</tr>
</tbody>
</table>

UF = uncertainty factor, FQPA SF = Special FQPA safety factor, NOAEL = no observed adverse effect level, LOAEL = lowest observed adverse effect level, PAD = population adjusted dose (a = acute, c = chronic) RfD = reference dose, MOE = margin of exposure, LOC = level of concern, NA = Not applicable.

C. Exposure Assessment

1. Dietary exposure from food and feed uses. Tolerances have been established (40 CFR 180.603) for the combined residues of dinotefuran and its metabolites, in or on a variety of raw agricultural commodities. Risk assessments were conducted by EPA to assess dietary exposures from dinotefuran in food as follows:

 i. Acute exposure. Acute dietary risk assessments are performed for a food-use pesticide, if a toxicological study has indicated the possibility of an effect of concern occurring as a result of a 1-day or single exposure.

 In conducting the acute dietary risk assessment EPA used the DEEM™ software with the FCID, which incorporates food consumption data as reported by respondents in the U.S. Department of Agriculture (USDA) 1994–1996 and 1998 Nationwide Continuing Surveys of Food Intake by Individuals (CSFII), and accumulated exposure to the chemical for each commodity. The following assumptions were made for the chronic exposure assessments: The dietary risk analyses incorporated tolerance level residues and assumed 100% of the crops had been treated with dinotefuran. The chronic risk estimates are below the Agency’s level of concern (<100% cPAD) for the general U.S. population and all population subgroups.

 ii. Chronic exposure. In conducting the chronic dietary risk assessment EPA used the DEEM™ software with the FCID, which incorporates food consumption data as reported by respondents in the USDA 1994–1996 and 1998 CSFII, and accumulated exposure to the chemical for each commodity. The following assumptions were made for the chronic exposure assessments: The dietary risk analyses incorporated tolerance level residues and assumed 100% of the crops had been treated with dinotefuran. The chronic risk estimates are below the Agency’s level of concern (<100% aPAD) for the general U.S. population and all population subgroups.

 iii. Cancer. Dinotefuran is classified as “not likely to be a carcinogen,” therefore, an exposure assessment for quantifying cancer risk was not conducted.

2. Dietary exposure from drinking water. The Agency lacks sufficient monitoring exposure data to complete a comprehensive dietary exposure analysis and risk assessment for dinotefuran in drinking water. Because the Agency does not have comprehensive monitoring data, drinking water concentration estimates are made by reliance on simulation or modeling taking into account data on the physical characteristics of dinotefuran.

 The Agency uses the FQPA Index Reservoir Screening Tool (FIRST) or the Pesticide Root Zone Model/Exposure Analysis Modeling System (PRZM/EXAMS), to produce estimates of pesticide concentrations in an index reservoir. The SCI-GROW model is used in predicting pesticide concentrations in shallow ground water. For a screening-level assessment for surface water EPA will use FIRST (a Tier 1 model) before using PRZM/EXAMS (a Tier 2 model). The FIRST model is a subset of the PRZM/EXAMS model that uses a specific high-end runoff scenario for pesticides. Both FIRST and PRZM/EXAMS incorporate an index reservoir environment, and both models include a percent crop treated (PCT) area factor as an adjustment to account for the maximum PC coverage within a watershed or drainage basin.

 None of these models include consideration of the impact processing (mixing, dilution, or treatment) of raw water for distribution as drinking water would likely have on the removal of pesticides from the source water. The primary use of these models by the Agency at this stage is to provide a screen for sorting out pesticides for which it is unlikely that drinking water concentrations would exceed human health levels of concern.

 Since the models used are considered to be screening tools in the risk assessment process, the Agency does not use estimated environmental concentrations (EECs), which are the model estimates of a pesticide’s concentration in water. EECs derived from these models are used to quantify drinking water exposure and risk as a %RID or %PAD. Instead, drinking water levels of comparison (DWLOCs) are calculated and used as a point of comparison against the model estimates of a pesticide’s concentration in water. DWLOCs are theoretical upper limits on a pesticide’s concentration in drinking water in light of total aggregate exposure to a pesticide in food, and from residential uses. Since DWLOCs address total aggregate exposure to dinotefuran they are further discussed in the aggregate risk sections below.

 Based on the FIRST and SCI-GROW models, the EECs of dinotefuran for acute exposures are estimated to be 76 parts per billion (ppb) for surface water and 5.1 ppb for ground water. The EECs for chronic exposures are estimated to be 21 ppb for surface water and 5.1 ppb for ground water.

3. From non-dietary exposure. The term “residential exposure” is used in...
this document to refer to non-
occupational, non-dietary exposure
e.g., for lawn and garden pest control,
indoor pest control, termiteicides, and
flea and tick control on pets).
Dinotefuran is currently registered for
use on the following residential non-
dietary sites: Professional turf
management, professional ornamental
production, residential indoor, and
lawn. The risk assessment was
conducted using the following
residential exposure assumptions:
Outdoor uses for turf farms, golf
courses, residential lawns, and
ornamentals.

There is a potential for exposure to
homeowners in residential settings
during the application of products
containing dinotefuran. There is also
a potential for exposure from entering
areas previously treated with
dinotefuran such as lawns where
children might play, or golf courses and
home gardens that could lead to
exposures for adults. As a result, risk
assessments were previously discussed
for both residential handler and
postapplication scenarios in the final
rule for setting tolerance on leafy
vegetables in the Federal Register
of September 17, 2004 (69 FR 55963)
(FRL-7368-1). The proposed new
agricultural uses of dinotefuran do not
add any additional residential
exposures or risks.

The risks from the combined
exposures of adults applying
dinotefuran to residential lawns and
then being dermally exposed from
postapplication activities on the treated
lawn do not exceed the Agency’s level
of concern. Children’s combined risks
from activities on treated lawns do not
exceed the Agency’s level of concern.

4. Cumulative effects from substances
with a common mechanism of toxicity.
Section 408(b)(2)(D)(v) of FFDCA
requires that, when considering whether
to establish, modify, or revoke a
tolerance, the Agency consider
“available information” concerning the
cumulative effects of a particular
pesticide’s residues and “other
substances that have a common
mechanism of toxicity.”

Unlike other pesticides for which EPA
has followed a cumulative risk approach
based on a common mechanism of
toxicity, EPA has not made a common
mechanism of toxicity finding as to
dinotefuran and any other substances
and dinotefuran does not appear to
produce a toxic metabolite produced by
other substances. For the purposes of
this tolerance action, therefore, EPA has
not assumed that dinotefuran has a
common mechanism of toxicity with
other substances. For information
regarding EPA’s efforts to determine
which chemicals have a common
mechanism of toxicity and to evaluate
the cumulative effects of such
chemicals, see the policy statements
released by EPA concerning common
mechanism determinations and
procedures for cumulating effects from
substances found to have a common
mechanism on EPA’s web site at http://
/www.epa.gov/pesticides/cumulative/
.

D. Safety Factor for Infants and
Children

1. In general. Section 408 of FFDCA
provides that EPA shall apply an
additional tenfold margin of safety for
infants and children in the case of
threshold effects to account for prenatal
and postnatal toxicity and the
completeness of the database on toxicity
and exposure unless EPA determines
based on reliable data that a different
margin of safety will be safe for infants
and children. Margins of safety are
incorporated into EPA risk assessments
either directly through use of a MOE
analysis or through using uncertainty
(safety) factors (UFs) in calculating a
dose level that poses no appreciable risk
to humans. In applying this provision,
EPA either retains the default value of
10X when reliable data do not support
the choice of a different factor, or, if
reliable data are available, EPA uses a
different additional safety factor value
based on the use of traditional UFs and/
or special FQPA safety factors, as
appropriate.

2. Prenatal and postnatal sensitivity.
Prenatal developmental toxicity studies
in rats and rabbits provided no
indication of increased susceptibility
(qualitative or quantitative) of rat or
rabbit fetuses to in utero exposure to
dinotefuran. There was no indication of
increased (quantitative) susceptibility in
the fetuses as compared to parental
animals in the two generation
reproduction study. Qualitative
susceptibility was observed in the
reproduction study; however, the degree
of concern is low because the observed
effects are well characterized (decreased
body weight, decreased thymus weight,
and decreased grip strength) and there
are clear NOAELs/LOAELs.

3. Conclusion. Although there is
generally low concern and no residual
uncertainties for prenatal and/or
postnatal toxicity resulting from
exposure to dinotefuran, some
uncertainty is raised by a deficiency in the
data (a lack of a NOAEL in the
chronic dog study) and the need for a
developmental immunotoxicity study
(DIT).

The absence of a NOAEL for the
chronic dog study and the need for a
DIT study generate some uncertainty
regarding the protectiveness of chronic
regulatory endpoints and long-term
levels of concern. Accordingly, EPA
does not have reliable data supporting
adoption of a safety factor other than the
default additional 10X factor as
specified in FFDCA section 408(b)(2)(C).
The chronic endpoint and long-term
level of concern have therefore, been
generated using an overall safety/UF of
1,000 representing 100X for
interspecies and intraspecies variation
and an additional 10X pursuant to
FFDCA section 408(b)(2)(C).

The Agency does not have similar
concerns regarding acute, short-term,
and intermediate-term risk assessments
for several reason. First, the absence of
a NOAEL only occurred in a chronic
study. Second, reliable data show that
the DIT is unlikely to result in a NOAEL
for acute, short-term, or intermediate-
term effects that is lower than the
NOAELs currently being used to assess
the risk from such effects. EPA has
required a DIT study with dinotefuran
based on the changes in the thymus
weight in offspring in the reproduction
study and in adult rats and dogs. There
is, however, little evidence to support a
direct effect of dinotefuran on immune
function. This is because lymphoid
organ weight changes can be secondary
to generalized toxicity (e.g., reductions
in body weight, body weight gain, and/
or food efficiency). In the reproduction
study, decreased thymus weights were
seen in offspring in the presence of
decreased body weight only at the Limit
Dose (10,000 ppm). In the 1-year dog
study, decrease in thymus weight was
seen in the absence of other toxicity,
however, no decrease in thymus weight
was seen in the subchronic study in
dogs which was conducted at higher
doses (i.e., the results of the 1-year
study was not supported by the results
of the 90-day study).

Further, the only evidence on
dinotefuran’s potential immunological
effect is found in studies with prolonged
exposure. In the reproduction study, the
effect of concern i.e., decrease in thymus
weight in only 1-generation (F2) was
seen only following approximately 13–
weeks of exposure to the parental
animals at close to the limit dose (1,000
mg/kg). Similarly, thymus effects in the
chronic dog study were only observable
after long-term exposures, but were not
seen in the 90-day dog study.

Finally, it is clear that the DIT study,
which is performed in the rat, will have
to be conducted at high doses (close to
the limit dose) to elicit a potential single
dose effect and this will result in a
potential NOAEL higher than that
currently used for various risk
assessments. As noted, in the rat reproduction study, effects only occurred at doses close to the limit dose (1,000 mg/kg/day). The limit dose is the maximum dose recommended for testing in the Series 870 Health Effects Harmonized Test Guidelines; toxic effects occurring only at or near the limit dose are of less concern for human health since they may be specifically related to the high dose exposure and may not occur at the much lower doses to which humans are exposed.

Additionally, in the acute neurotoxicity study in the rat, the LOAEL was 750 mg/kg/day in females and 1,500 mg/kg/day in males based on reductions in motor activity indicating that high doses are required to elicit dinotefuran-induced toxicity in rats.

The NOAELs in the critical studies selected for acute dietary (125 mg/kg/day), short-term incidental oral (33 mg/kg/day), and intermediate-term incidental oral and dermal (22 mg/kg/day) exposure scenarios are lower than the offspring NOAEL (241 mg/kg/day) in the reproduction study. Therefore, EPA is confident that the doses selected for these risk assessments will address the concerns for the thymus weight changes seen in the offspring in the reproduction study and will not underestimate the potential risk from exposure to dinotefuran.

The Agency believes there are reliable data showing that the regulatory endpoints are protective of children despite the need for a development neurotoxicity (DNT) study. DNT data received and reviewed for other compounds in this chemical class (neonicotinoids) including thiacloprid, clothianidin, and imidacloprid, indicate that the results of the required DNT study will not likely impact the regulatory doses selected for dinotefuran.

In addition, the acute and chronic dietary food exposure assessment utilized proposed tolerance level residues and 100% crop treated information for all commodities. By using these screening-level assessments, acute and chronic exposure/risk will not be underestimated. Furthermore, the dietary drinking water assessment (Tier 1 estimates) uses values generated by models and associated modeling parameters which are designed to provide conservative, health protective, high-end estimates of water concentrations. Finally, the residential assessment for children’s postapplication exposures is based upon maximum application rates in conjunction with chemical-specific study data and are not expected to underestimate risk.

E. Aggregate Risks and Determination of Safety

To estimate total aggregate exposure to a pesticide from food, drinking water, and residential uses, the Agency calculates DWLOCs which are used as a point of comparison against EECs. DWLOC values are not regulatory standards for drinking water. DWLOCs are theoretical upper limits on a pesticide’s concentration in drinking water in light of total aggregate exposure to a pesticide in food and residential uses. In calculating a DWLOC, the Agency determines how much of the acceptable exposure (i.e., the PAD) is available for exposure through drinking water e.g., allowable chronic water exposure (mg/kg/day) = cPAD - (average food + residential exposure). This allowable exposure through drinking water is used to calculate a DWLOC.

A DWLOC will vary depending on the toxic endpoint, drinking water consumption, and body weights. Default body weights and consumption values as used by the EPA’s Office of Water are used to calculate DWLOCs: 2 liter (L)/70 kg (adult male), 2L/60 kg (youth and adult female), and 1L/10 kg (child). Default body weights and drinking water consumption values vary on an individual basis. This variation will be taken into account in more refined screening-level and quantitative drinking water exposure assessments.

When EECs for surface water and ground water are less than the calculated DWLOCs, EPA concludes with reasonable certainty that exposures to the pesticide in drinking water (when considered along with other sources of exposure for which EPA has reliable data) would not result in unacceptable levels of aggregate human health risk at this time. Because EPA considers the aggregate risk resulting from multiple exposure pathways associated with a pesticide’s uses, levels of comparison in drinking water may vary as those uses change. If new uses are added in the future, EPA will reassess the potential impacts of residues of the pesticide in drinking water as a part of the aggregate risk assessment process.

1. Acute risk. Using the exposure assumptions discussed in this unit for acute exposure, the acute dietary exposure from food to dinotefuran will occupy 1.2% of the aPAD for the U.S. population, 1.2% of the aPAD for females 13 to 49 years old, 1.3% of the aPAD for infants <1 year old, and 2.0% of the aPAD for children 1 to 2 years old. In addition, there is potential for acute dietary exposure to dinotefuran in drinking water. After calculating DWLOCs and comparing them to the EECs for surface water, and ground water, EPA does not expect the aggregate exposure to exceed 100% of the aPAD, as shown in the following Table 3.

<table>
<thead>
<tr>
<th>Population/Subgroup</th>
<th>aPAD (/mg/kg/day)</th>
<th>%aPAD/ (Food)</th>
<th>Surface Water EEC/ (ppb)</th>
<th>Ground Water EEC/ (ppb)</th>
<th>Acute DWLOC (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. population</td>
<td>1.25</td>
<td>1.2</td>
<td>76</td>
<td>5.1</td>
<td>43,000</td>
</tr>
<tr>
<td>All infants (<1 year old)</td>
<td>1.25</td>
<td>1.3</td>
<td>76</td>
<td>5.1</td>
<td>12,000</td>
</tr>
<tr>
<td>Children (1–2 years old)</td>
<td>1.25</td>
<td>2.9</td>
<td>76</td>
<td>5.1</td>
<td>12,000</td>
</tr>
<tr>
<td>Females (13–49 years old)</td>
<td>1.25</td>
<td>1.2</td>
<td>76</td>
<td>5.1</td>
<td>37,000</td>
</tr>
</tbody>
</table>

2. Chronic risk. Using the exposure assumptions described in this unit for chronic exposure, EPA has concluded that exposure to dinotefuran from food will utilize 21% of the cPAD for the U.S. population, 18% of the cPAD for infants <1 year old, and 54% of the cPAD for children 1 to 2 years old, and 20% of the cPAD for females 13 to 49 years old. Based on the use pattern, chronic residential exposure to residues of dinotefuran does not exceed the...
Agency’s level of concern, as discussed in Unit II.E.3. below. In addition, there is potential for chronic dietary exposure to dinotefuran in drinking water. After calculating DWLOCs and comparing them to the EECs for surface water, and ground water, EPA does not expect the aggregate exposure to exceed 100% of the cPAD, as shown in the following Table 4.

Table 4.—Aggregate Risk Assessment for Chronic (Non-Cancer) Exposure to Dinotefuran

<table>
<thead>
<tr>
<th>Population Subgroup</th>
<th>cPAD (mg/kg/day)</th>
<th>%cPAD (FOOD)</th>
<th>Surface Water EEC (ppb)</th>
<th>Ground Water EEC (ppb)</th>
<th>Chronic DWLOC (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. population</td>
<td>0.02</td>
<td>21</td>
<td>21</td>
<td>5.1</td>
<td>550</td>
</tr>
<tr>
<td>All infants (<1 year old)</td>
<td>0.02</td>
<td>18</td>
<td>21</td>
<td>5.1</td>
<td>160</td>
</tr>
<tr>
<td>Children (1–2 years old)</td>
<td>0.02</td>
<td>54</td>
<td>21</td>
<td>5.1</td>
<td>90</td>
</tr>
<tr>
<td>Females (13–49 years old)</td>
<td>0.02</td>
<td>19</td>
<td>21</td>
<td>5.1</td>
<td>490</td>
</tr>
</tbody>
</table>

3. Short-term risk. Short-term aggregate exposure takes into account residential exposure plus chronic exposure to food and water (considered to be a background exposure level).

Dinotefuran is currently registered for uses that could result in short-term residential exposure. Short-term and intermediate-term aggregate risk assessments based on exposure from oral, inhalation, and dermal routes were considered. However, the toxicological effects for oral and inhalation routes of exposure are different (i.e., neurotoxicity for oral and decrease in body weight for inhalation); and therefore, these exposure scenarios have not been combined. Also, because no systemic toxicity was observed at the limit dose in a 28-day dermal toxicity study, no quantification of short-term dermal risk is required. Therefore, a short-term aggregate risk assessment was not performed for dinotefuran. An intermediate-term aggregate risk assessment was performed for chronic exposure. The child subgroup with the highest estimated chronic dietary exposure (children 1–2 years old) was aggregated with residential exposures to children playing on treated lawns (dermal and oral hand-to-mouth exposures) in order to calculate the worst case intermediate-term aggregate risk to children. The reciprocal MOE method was used to conduct the intermediate-term aggregate risk assessment for children, since the level of concern MOEs are identical for all dietary and water (considered to be a background exposure level).

4. Intermediate-term risk. Intermediate-term aggregate exposure takes into account residential exposure plus chronic exposure to food and water (considered to be a background exposure level).

Dinotefuran is currently registered for use(s) that could result in intermediate-term residential exposure and the Agency has determined that it is appropriate to aggregate chronic food and water and intermediate-term exposures for dinotefuran. An intermediate-term aggregate risk assessment was performed as a screening level assessment for adults and children.

For children, the children’s subgroup with the highest estimated chronic dietary exposure (children 1–2 years old) was aggregated with residential exposures to children playing on treated lawns (dermal and oral hand-to-mouth exposures) in order to calculate the worst case intermediate-term aggregate risk to children. The reciprocal MOE method was used to conduct the intermediate-term aggregate risk assessment for children, since the level of concern MOEs are identical for all dietary and water (considered to be a background exposure level). For adults, the aggregate risk index method was used, since level of concern MOEs are not identical for all types of exposure in the calculation.

i. Intermediate-term aggregate risk for children. The child subgroup with the highest estimated chronic dietary exposure (children 1–2 years old) was used to calculate the intermediate-term aggregate risk, including chronic dietary (food and drinking water) and residential and oral exposures. Based on the toxicity endpoint information, all acceptable MOEs are 100, and an intermediate-term oral endpoint for incidental ingestion residential exposure was identified. Therefore, the intermediate-term incidental oral endpoint (NOAEL) was used to incorporate dietary (food and water), and residential incidental ingestion exposures in the aggregate risk assessment. An intermediate-term residential exposure scenario was identified and includes dermal and incidental oral exposure routes. To complete the aggregate intermediate-term exposure and risk assessment, chronic dietary (food and drinking water) and residential dermal and oral exposures must be included.

For children’s combined exposure on turf, the total MOE was estimated to be 590. The average (chronic) dietary exposure for the highest exposed child subgroup (children 1–2 years old) was estimated to be 0.011 mg/kg/day. The reciprocal MOE equation is solved for MOE water to determine the DWLOC_{intermediate-term} for children.

Compared with the Estimated Drinking Water Concentrations (EDWCs), EPA’s calculated aggregate intermediate-term DWLOC does not exceed the Agency’s level of concern for the subgroup population of children 1 to 2 years old. The aggregate risk assessment for intermediate-term exposure to children is summarized in the following Table 5.

Table 5.—Aggregate Risk Assessment for Intermediate-Term Exposure of Children to Dinotefuran

<table>
<thead>
<tr>
<th>Population</th>
<th>NOAEL/mg/kg/day</th>
<th>Target MOE</th>
<th>Max Exposure mg/kg/day</th>
<th>Average Food Exposure mg/kg/day</th>
<th>Residencial Exposure mg/kg/day</th>
<th>Aggregate MOE (food & residential)</th>
<th>Max Water Exposure mg/kg/day</th>
<th>Ground Water EEC µg/L</th>
<th>Surface Water EEC µg/L</th>
<th>Chronic DWLOC µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children (3–5 years old)</td>
<td>22</td>
<td>100</td>
<td>0.22</td>
<td>0.011</td>
<td>0.037</td>
<td>460</td>
<td>0.17</td>
<td>5.1</td>
<td>21</td>
<td>1,700</td>
</tr>
</tbody>
</table>

1 The target MOE of 100 is based on the standard inter- and intra-species safety factors, 10x for intra-species variability and 10x for inter-species extrapolation.

2 Maximum exposure (mg/kg/day) = NOAEL/Target MOE
A livestock enforcement method is needed to enforce the proposed tolerances of dinofuran in milk, meat, and meat byproducts. The Liquid Chromatography (LC)/MS/MS method, which was used for the analysis of samples collected from the cow feeding study, may be used for tolerance enforcement. The independent laboratory validation and radioisotopic validation are currently under review by the Agency.

B. International Residue Limits

There are currently no established Codex, Canadian, or Mexican maximum residue limits for residues of dinofuran in/on plant or livestock commodities.

V. Conclusion

Therefore, the tolerance is established for combined residues of dinofuran, [N-methyl-N’-nitro-N”-(tetrahydro-3-furyl)methyl]guanidine and the metabolites DN [1-methyl-3-(tetrahydro-3-furylmethyl)guanidine] and UF [1-methyl-3-(tetrahydro-3-furylmethyl)urea], expressed as dinofuran, in or on vegetable, fruiting, group 8 at 0.05 ppm; vegetable, cucurbit, group 9 at 0.5 ppm; Brassica, head and stem, subgroup 5A at 1.4 ppm; grape at 0.9 ppm; grape, raisin at 2.5 ppm; potato at 0.05 ppm; potato, chips at 0.1 ppm; potato, granules/flakes at 0.15 ppm; tomato, paste at 1.0 ppm; cotton, undelinted seed at 0.4 ppm; cotton, gin byproducts at 8.0 ppm; and for residues of dinofuran alone in or on cattle, meat at 0.5 ppm; cattle, fat at 0.05 ppm; cattle meat byproducts (mbyp) at 0.05 ppm; goat, meat at 0.05 ppm; goat, fat at 0.05 ppm; goat mbyp at 0.05 ppm; hog, meat at 0.05 ppm; hog, fat at 0.05 ppm; hog mbyp at 0.05 ppm; horse, meat at 0.05 ppm; horse, fat at 0.05 ppm; horse mbyp at 0.05 ppm; milk at 0.05 ppm; sheep, meat at 0.05 ppm; sheep, fat at 0.05 ppm; and sheep mbyp at 0.05 ppm.

TABLE 6.—AGGREGATE RISK ASSESSMENT FOR INTERMEDIATE-TERM EXPOSURE OF ADULTS TO DINOFURAN.

<table>
<thead>
<tr>
<th>Population</th>
<th>Target ARI</th>
<th>ARI Food</th>
<th>Residential ARIs</th>
<th>Max Water Exposure</th>
<th>Ground Water EDWC</th>
<th>Surface Water EDWC</th>
<th>Intermedium-Term DWLOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females (14–49 years old)</td>
<td>1</td>
<td>116</td>
<td>17</td>
<td>970</td>
<td>12</td>
<td>1.18</td>
<td>5.1</td>
</tr>
</tbody>
</table>

1. ARI (Aggregate Risk Index) = MOE_Calculated/MOE_Acceptable
2. ARI_Food = [22 / 0.0019] / 100 = 116
3. ARI_residential_applicator_dermal = MOE_residential_applicator_dermal / 1,000
4. ARI_lich_inhalation = (1/ARI_residential_applicator_dermal) + (1/ARI_residential_applicator_inhalation) + (1/ARI_postapplication_dermal)
5. The maximum water exposure is calculated using the ARI method for the highest level used; i.e., turf.
6. DWLOC (µg/L) = Maximum water exposure (mg/kg/day) x body weight (60 kg) / [Water exposure (1L) x 10–3 mg/µg]
VI. Objections and Hearing Requests

Under section 408(g) of FFDCA, as amended by FQPA, anyone may file an objection to any aspect of this regulation and may also request a hearing on those objections. The EPA procedural regulations which govern the submission of objections and requests for hearings appear in 40 CFR part 178. Although the procedures in those regulations require some modification to reflect the amendments made to FFDCA by FQPA, EPA will continue to use those procedures, with appropriate adjustments, until the necessary modifications can be made. The new section 408(g) of FFDCA provides essentially the same process for persons to “object” to a regulation for an exemption from the requirement of a tolerance issued by EPA under 40 CFR part 178, as was provided in the old sections 408 and 409 of FFDCA. However, the period for filing objections is now 60 days, rather than 30 days.

A. What Do I Need to Do to File an Objection or Request a Hearing?

You must file your objection or request a hearing on this regulation in accordance with the instructions provided in this unit and in 40 CFR part 178. To ensure proper receipt by EPA, you must identify docket ID number OPP–2005–0003, provide in this subject line on the first page of your submission. All requests must be in writing, and must be mailed or delivered to the Hearing Clerk by EPA without prior notice.

1. Filing the request. Your objection must specify the specific provisions in the regulation that you object to, and the grounds for the objections (40 CFR 178.25). If a hearing is requested, the objections must include a statement of the factual issues(s) on which a hearing is requested, the requestor’s contentions on such issues, and a summary of any evidence relied upon by the objector (40 CFR 178.27). Information submitted in connection with an objection or hearing request may be claimed confidential by marking any part or all of that information as CBI. Information so marked will not be disclosed except in accordance with procedures set forth in 40 CFR part 2. A copy of the information that does not contain CBI must be submitted for inclusion in the public record. Information not marked confidential may be disclosed publicly by EPA without prior notice.

Mail your written request to: Office of the Hearing Clerk (1500L), Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460–0001. You may also deliver your request to the Office of the Hearing Clerk in Suite 350, 1099 14th St., NW., Washington, DC 20005. The Office of the Hearing Clerk is open from 8 a.m. to 4 p.m., Monday through Friday, excluding legal holidays. The telephone number for the Office of the Hearing Clerk is (202) 564–6255.

2. Copies for the Docket. In addition to filing an objection or hearing request with the Hearing Clerk as described in Unit VI.A., you should also send a copy of your request to the PIRIB for its inclusion in the official record that is described in 40 CFR 178.25). Mail your copies, identified by docket ID number OPP–2005–0003, to: Public Information and Records Integrity Branch, Information Resources and Services Division (7502C), Office of Pesticide Programs, Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460–0001. In person or by courier, bring a copy to the location of the PIRIB described in ADDRESSES. You may also send an electronic copy of your request via e-mail to: opp-docket@epa.gov. Please use an ASCII file format and avoid the use of special characters and any form of encryption. Copies of electronic objections and hearing requests will also be accepted on disks in WordPerfect 6.1/8.0 or ASCII file format. Do not include any CBI in your electronic copy. You may also submit an electronic copy of your request at many Federal Depository Libraries.

B. When Will the Agency Grant a Request for a Hearing?

A request for a hearing will be granted if the Administrator determines that the material submitted shows the following: There is a genuine and substantial issue of fact; there is a reasonable possibility that available evidence identified by the requestor would, if established resolve one or more of such issues in favor of the requestor, taking into account uncontested claims or facts to the contrary; and resolution of the factual issues(s) in the manner sought by the requestor would be adequate to justify the action requested (40 CFR 178.32).

VII. Statutory and Executive Order Reviews

This final rule establishes a tolerance under section 408(d) of FFDCA in response to a petition submitted to the Agency. The Office of Management and Budget (OMB) has exempted these types of actions from review under Executive Order 12866, entitled Regulatory Planning and Review (58 FR 51735, October 4, 1993). Because this rule has been exempted from review under Executive Order 12866 due to its lack of significance, this rule is not subject to Executive Order 13211, Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use (66 FR 28355, May 22, 2001). This final rule does not contain any information collections subject to OMB approval under the Paperwork Reduction Act (PRA), 44 U.S.C. 3501 et seq., or impose any enforceable duty or contain any unfunded mandate as described under Title II of the Unfunded Mandates Reform Act of 1995 (UMRA) (Public Law 104–4). Nor does it require any special considerations under Executive Order 12898, entitled Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (59 FR 7629, February 16, 1994); or OMB review or any Agency action under Executive Order 13045, entitled Protection of Children from Environmental Health Risks and Safety Risks (62 FR 19885, April 23, 1997). This action does not involve any technical standards that would require Agency consideration of voluntary consensus standards pursuant to section 12(d) of the National Technology Transfer and Advancement Act of 1995 (NTTAA), Public Law 104–113, section 12(d) (15 U.S.C. 272 note). Since tolerances and exemptions that are established on the basis of a petition under section 408(d) of FFDCA, as such the tolerance in this final rule, do not require the issuance of a proposed rule, the requirements of the Regulatory Flexibility Act (RFA) (5 U.S.C. 601 et seq.) do not apply. In addition, the Agency has determined that this action will not have a substantial direct effect on States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government, as specified in Executive Order 13132, entitled Federalism (64 FR 43255, August 10, 1999). Executive Order 13132 requires EPA to develop an accountable process to ensure “meaningful and timely input by State and local officials in the development of regulatory policies that have federalism implications.” “Policies that have federalism implications” is defined in the Executive Order to include regulations that have “substantial direct effects on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government.” This final rule directly regulates grocery store processors, food handlers and food retailers, not States. This action does not
alter the relationships or distribution of power and responsibilities established by Congress in the preemption provisions of section 408(n)(4) of FFDCA. For these same reasons, the Agency has determined that this rule does not have any “tribal implications” as described in Executive Order 13175, entitled Consultation and Coordination with Indian Tribal Governments (65 FR 67249, November 6, 2000). Executive Order 13175, requires EPA to develop an accountable process to ensure “meaningful and timely input by tribal officials in the development of regulatory policies that have tribal implications.” “Policies that have tribal implications” is defined in the Executive Order to include regulations that have “substantial direct effects on one or more Indian tribes, on the relationship between the Federal Government and the Indian tribes, or on the distribution of power and responsibilities between the Federal Government and Indian tribes.” This rule will not have substantial direct effects on tribal governments, on the relationship between the Federal Government and Indian tribes, as specified in Executive Order 13175. Thus, Executive Order 13175 does not apply to this rule.

VIII. Congressional Review Act

The Congressional Review Act, 5 U.S.C. 801 et seq., as added by the Small Business Regulatory Enforcement Fairness Act of 1996, generally provides that before a rule may take effect, the agency promulgating the rule must submit a rule report, which includes a copy of the rule, to each House of the Congress and to the Comptroller General of the United States. EPA will submit a report containing this rule and other required information to the U.S. Senate, the U.S. House of Representatives, and the Comptroller General of the United States prior to publication of this final rule in the Federal Register. This final rule is not a “major rule” as defined by 5 U.S.C. 804(2).

List of Subjects in 40 CFR Part 180

Environmental protection, Administrative practice and procedure, Agricultural commodities, Pesticides and pests, Reporting and recordkeeping requirements.

Lois Rossi,
Director, Registration Division, Office of Pesticide Programs.

Therefore, 40 CFR chapter I is amended as follows:

PART 180—[AMENDED]

§ 180.603 Dinotefuran; tolerances for residues.

(a) General. (1) Tolerances are established for the combined residues of Dinotefuran, [N-methyl-N′-nitro-N′-[(tetrahydro-3-furanyl)methyl]guanidine] and its metabolites DN [1-methyl-3-(tetrahydro-3-furylmethyl)guanidine] and UF [1-methyl-3-(tetrahydro-3-furylmethyl)urea], expressed as dinotefuran.

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brassica, head and stem, subgroup 5A</td>
<td>1.4</td>
</tr>
<tr>
<td>Cotton, undelinted seed</td>
<td>0.4</td>
</tr>
<tr>
<td>Cotton, gin byproducts</td>
<td>8.0</td>
</tr>
<tr>
<td>Grape</td>
<td>0.9</td>
</tr>
<tr>
<td>Grape, raisin</td>
<td>2.5</td>
</tr>
<tr>
<td>Potato</td>
<td>0.05</td>
</tr>
<tr>
<td>Potato, chips</td>
<td>0.1</td>
</tr>
<tr>
<td>Tomato, paste</td>
<td>0.15</td>
</tr>
<tr>
<td>Vegetable, fruity, group 8</td>
<td>1.0</td>
</tr>
<tr>
<td>Vegetable, cucubit, group 9</td>
<td>0.7</td>
</tr>
<tr>
<td>Vegetable, leafy, except Brassica, group 4</td>
<td>0.5</td>
</tr>
<tr>
<td>Vegetable, group 4</td>
<td>5.0</td>
</tr>
</tbody>
</table>

(b) Section 18 emergency exemptions. [Reserved]

(c) Tolerances with regional registrations. [Reserved]

(d) Indirect or inadvertent residues. [Reserved]

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle, fat</td>
<td>0.05</td>
</tr>
<tr>
<td>Cattle, mbybp</td>
<td>0.05</td>
</tr>
<tr>
<td>Cattle, meat</td>
<td>0.05</td>
</tr>
<tr>
<td>Goat, fat</td>
<td>0.05</td>
</tr>
<tr>
<td>Goat, mbybp</td>
<td>0.05</td>
</tr>
<tr>
<td>Goat, meat</td>
<td>0.05</td>
</tr>
<tr>
<td>Hog, fat</td>
<td>0.05</td>
</tr>
<tr>
<td>Hog, mbybp</td>
<td>0.05</td>
</tr>
<tr>
<td>Hog, meat</td>
<td>0.05</td>
</tr>
<tr>
<td>Horse, fat</td>
<td>0.05</td>
</tr>
<tr>
<td>Horse, mbybp</td>
<td>0.05</td>
</tr>
<tr>
<td>Horse, meat</td>
<td>0.05</td>
</tr>
<tr>
<td>Milk</td>
<td>0.05</td>
</tr>
<tr>
<td>Sheep, fat</td>
<td>0.05</td>
</tr>
<tr>
<td>Sheep, mbybp</td>
<td>0.05</td>
</tr>
<tr>
<td>Sheep, meat</td>
<td>0.05</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 180

[OPP–2005–0049; FRL–7703–1]

Mesotrione; Pesticide Tolerance

AGENCY: Environmental Protection Agency (EPA).

ACTION: Final rule.

SUMMARY: This regulation establishes tolerances for residues of mesotrione in or on sweet corn. Syngenta Crop Protection Inc. requested these tolerances under the Federal Food, Drug, and Cosmetic Act (FFDCA), as amended by the Food Quality Protection Act of 1996 (FQPA).

DATES: This regulation is effective March 23, 2005. Objections and requests for hearings must be received on or before May 23, 2005.

ADDRESSES: To submit a written objection or hearing request follow the detailed instructions as provided in Unit VI. of the SUPPLEMENTARY INFORMATION. EPA has established a docket for this action under docket identification (ID) number OPP–2005–0049. All documents in the docket are listed in the EDOCKET index at http://www.epa.gov/edocket. Although listed in the index, some information is not publicly available, i.e., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available either electronically in EDOCKET or in hard copy at the Public Information and Records Integrity Branch (PIRIB), Rm. 119, Crystal Mall #2, 1801 S. Bell St., Arlington, VA. This docket facility is open from 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal holidays. The docket telephone number is (703) 305–5805.

FOR FURTHER INFORMATION CONTACT: Joanne Miller, Registration Division (7505C), Office of Pesticide Programs, Environmental Protection Agency, 1200 Pennsylvania Ave., NW., Washington, DC 20460; telephone number: (703)